集合论

集合论

[TOC]

Set Theory

extension(外延):像是列举法

intension(内涵):像是描述法

empty set :空集

universal set :全集

Cardinality : 基数

​ Card(A): the number of elements of set A

几个概念:

概念名 中文 符号
equivalent 相等 $=$
subset 子集 $\subseteq$
proper-subset 真子集 $\subset$
not subset 不是子集 $\nsubseteq$
union 并集 $\bigcup$
intersection 交集 $\bigcap$
difference 差集 $-$
complement 余集(A的绝对补集) $A^{c}=E\textbackslash{A}$
symmetric difference 对称差 $A\oplus{B}=(A-B)\bigcup(B-A)$

a family of sets 集合族:A is a family set of sets over S if each element in A is a subset of S.

$\bigcup{A}$:A的广义并:$\bigcup{A}={x:(\exist{z})(z\in{A}\and{x\in{z})}}$

$\bigcap{A}$:A的广义交:$\bigcap{A}={x:(\forall{z})(z\in{A}\rightarrow{x\in{z}})}$

*注:$\bigcap{\empty}$ is undefined while $\bigcup{\empty}=\empty$

power set :幂集

相关结论:

(1) $A \subseteq B \Leftrightarrow 2^A \subseteq 2^B$

(2) $2^A \in 2^B \Rightarrow A \in B$:$\Leftarrow$的反例:

(3) $2^A \cap 2^B=2^{A \cap B}$

(4) $2^A \cup 2^B \subseteq 2^{A \cup B}$:(比如$A={1,2,3,4}$$B={1,2,5,6}$很显然$2^A \cup 2^B$ 和$2^{A \cup B}$不一样大

Transitive Set(传递集):quicker_1cf7e292-61f2-4aaf-8bae-57df5b3094c0.png

相关性质:quicker_4432c48c-ef1d-4f48-a985-914a8f0843bf.png

证明

有序对:

1.$\langle x, y\rangle:={{x},{x, y}}$

2.$\langle a, b, c, d\rangle=\langle\langle a, b, c\rangle, d\rangle=\langle\langle\langle a, b\rangle, c\rangle, d\rangle$

3.Cartisian Product (笛卡尔积)

4.quicker_c403fe6c-abf0-4c2b-94da-4f6d126c10ea.png

5.$A \times B \subseteq C \times D$ iff $A \subseteq C$ and $B \subseteq D$ Proof

关系

1.<a,b>$\in$R $\Leftrightarrow$aRb

2.Identity Relation(恒等关系):

3.Universal Relation(全域关系):

4.Empty Relation(空关系):

5.$\operatorname{fld}(R)=\bigcup \bigcup R$ –证明

6.某个关系的一些运算:

运算 汉译 含义
converse $R^{-1}={\langle x, y\rangle:\langle y, x\rangle \in R}$
restriction 限制 $R \mid A={\langle x, y\rangle:\langle x, y\rangle \in R \wedge x \in A}$
image $R[A]={y:(\exists x)(x \in A \wedge\langle x, y\rangle \in R)}$
composite 合成 $S \circ R={\langle x, z\rangle:(\exists y)(\langle x, y\rangle \in R \wedge\langle y, z\rangle \in S)}$

7.结论

(1) $R \circ(S \cup W)=(R \circ S) \cup(R \circ W)$ (2) $(R \cup S) \circ W=(R \circ W) \cup(S \circ W)$ (3) $R \circ(S \cap W) \subseteq(R \circ S) \cap(R \circ W)$ (4) $(R \cap S) \circ W \subseteq(R \circ W) \cap(S \circ W)$

8.关系的一些性质:

性质 汉译 等价条件
reflexive 自反的 $I_{A}\subseteq{R}$
inreflexive 反自反 $I_{A}\bigcap R=\empty$
symmetric 对称 $R^{-1}\subseteq R$ iff $R^{-1}=R$
antisymmetric 反对称 $R\bigcap R^{-1}=I_A$
transitive 传递 $R\circ R\subseteq R$

性质:—proof

(1) If $R_1, R_2 \subseteq A \times A$ are reflexive, then $R_1^{-1}, R_1 \cap R_2, R_1 \cup R_2$ are reflexive. (2) If $R_1, R_2 \subseteq A \times A$ are symmetric, then $R_1^{-1}, R_1 \cap R_2, R_1 \cup R_2$ are symmetric. (3) If $R_1, R_2 \subseteq A \times A$ are transitive, then $R_1^{-1}, R_1 \cap R_2$ are transitive. (4) If $R_1, R_2 \subseteq A \times A$ are antisymmetric, then $R_1^{-1}, R_1 \cap R_2$ are antisymmetric.

闭包

类型 汉译 构造方法 表示
reflexive closure 传递闭包 $R\bigcup I_A$ $r(R)$
symmetric closure 对称闭包 $R\bigcup R^{-1}$ $s(R)$
transitive closure 传递闭包 $\displaystyle\bigcup_{n=1}^{\infty}{R^n}$ $t(R)$

性质:proof

(1) If $R$ is symmetric/reflexive/transitive, then $s(R)=R$ or $r(R)=R$ or $t(R)=R$. (2) If $R_1 \subseteq R_2$, then $r\left(R_1\right) \subseteq r\left(R_2\right), s\left(R_1\right) \subseteq s\left(R_2\right)$ and $t\left(R_1\right) \subseteq t\left(R_2\right)$ (3) $r\left(R_1\right) \cup r\left(R_2\right)=r\left(R_1 \cup R_2\right)$ (4) $s\left(R_1\right) \cup s\left(R_2\right)=s\left(R_1 \cup R_2\right)$ (5) $t\left(R_1\right) \cup t\left(R_2\right) \subseteq t\left(R_1 \cup R_2\right)$

more: proof

(1) If $R$ is reflexive, then $s(R)$ and $t(R)$ are also reflexive. (2) If $R$ is symmetric, then $r(R)$ and $t(R)$ are also symmetric. (3) If $R$ is transitive, then $r(R)$ is also transitive.

other:

(1) $r(s(R))=s(r(R))$ (2) $r(t(R))=t(r(R))$ (3) $s(t(R)) \subseteq t(s(R))$

等价关系:Equivalence Relation

1.一些概念

概念 汉译 含义 符号
equivalence class 等价类 ~~~~ $[x]_R={y: y \in A \wedge x R y}$
quotient set 商集   $A / R=\left{[x]_R: x \in A\right}$
partition 划分 ~~~~  
  相容关系 自反且对称  

相容关系:Tolerance Relation

1.reflexive and symmetric

2.tolerance class 相容类

3.maximal tolerance class 最大相容类

覆盖:cover

  1. definition

偏序: Partial Order

1.poset 偏序集 :$<A,R>$

2.we say y covers x if :

$(x \leq y) \wedge(x \neq y) \wedge \neg(\exists z)(z \in A \wedge x \leq z \wedge z \leq y \wedge z \neq x \wedge z \neq y)$

3.$\operatorname{cov}_R(A)={\langle x, y\rangle \in R: y$ covers $x}$

4.Hasse Diagram(哈斯图)

5.一些概念 (都是一些元素)

  • the least element (最小元) of $B$ if $(\forall y)(y \in B \rightarrow x \leq y)$

  • the greatest element (最大元) of $B$ if $(\forall y)(y \in B \rightarrow y \leq x)$
  • a minimal element (极小元) of $B$ if $(\forall y)(y \in B \wedge y \leq x \rightarrow x=y)$
  • a maximal element (极大元) of $B$ if $(\forall y)(y \in B \wedge x \leq y \rightarrow x=y)$
  • the upper bound (上界) of $B$ if $(\forall y)(y \in B \rightarrow y \leq x)$
  • the lower bound (下界) of $B$ if $(\forall y)(y \in B \rightarrow x \leq y$ )
  • least upper bound (最小上界/上确界)
  • greatest lower bound (最大下界/下确界)

函数:Function

total function 全函数
partial function 部分函数
  1. 写法:$f: A \rightarrow B, f: x \mapsto y$
  2. all functions from A to B: $A_B ={f:(f : A \rightarrow B)}$
  3. Indicator Function (特征函数): Let $A \subseteq E$. Then $\mathcal{X}_A: E \rightarrow{0,1}$ is defined by $\mathcal{X}_A(x)=1$ iff $x \in A$.
    • injection (单射): if $\left(\forall x_1 \in A\right)\left(\forall x_2 \in A\right)\left(x_1 \neq x_2 \rightarrow f\left(x_1\right) \neq f\left(x_2\right)\right)$
    • surjection (满射) : if $\operatorname{ran}(f)=B$
    • bijection (双射): if it is both an injection and a surjection.
  4. only when f is a bijection, we have that $f^{-1} : B \rightarrow A$ is a function, and we call $f^{-1}$ the inverse function (逆函数)

  5. (1) If $f$ and $g$ are bijections (respectively, injections or surjections), then $f \circ g$ is also a bijection (respectively, injection or surjection). (2) If $f \circ g$ is a surjection, then $f$ is a surjection. (3) If $f \circ g$ is an injection, then $g$ is an injection. (4)IF $f \circ g$ is an bijection, then $f,g$ are both bijections.

基数和等势

1.the cardinality (基数) of A: $ A $ or card(A) :the number of element in A

2.无穷的大小:

  • $ \mathbb{N} =\aleph_0$, where $\aleph_0$ is called the Aleph Zero (阿列夫零);
  • If $\left A_k\right =\aleph_k$, then $\left 2^{A_k}\right =\aleph_{k+1}$, where $\aleph_k$ is called the Aleph $k$ (阿列夫 $k$ ).

3.dominated(支配):A is dominated by B means $A\preceq B$

​ we say $A\prec B$ : if $A \preceq B$ and $A\not\approx B $

4.Theorem: Schröder-Berstein’s Theorem If $A \preceq B$ and $B \preceq A$, then $A \approx B$.

5.for any set A, we have $A\not\approx2^{A}$

6.$2^{\N}\approx \R$