CC BY 4.0 (除特别声明或转载文章外)
如果这篇博客帮助到你,可以请我喝一杯咖啡~
集合论
[TOC]
Set Theory
extension(外延):像是列举法
intension(内涵):像是描述法
empty set :空集
universal set :全集
Cardinality : 基数
Card(A): the number of elements of set A
几个概念:
| 概念名 | 中文 | 符号 |
|---|---|---|
| equivalent | 相等 | $=$ |
| subset | 子集 | $\subseteq$ |
| proper-subset | 真子集 | $\subset$ |
| not subset | 不是子集 | $\nsubseteq$ |
| union | 并集 | $\bigcup$ |
| intersection | 交集 | $\bigcap$ |
| difference | 差集 | $-$ |
| complement | 余集(A的绝对补集) | $A^{c}=E\textbackslash{A}$ |
| symmetric difference | 对称差 | $A\oplus{B}=(A-B)\bigcup(B-A)$ |
a family of sets 集合族:A is a family set of sets over S if each element in A is a subset of S.
$\bigcup{A}$:A的广义并:$\bigcup{A}={x:(\exist{z})(z\in{A}\and{x\in{z})}}$
$\bigcap{A}$:A的广义交:$\bigcap{A}={x:(\forall{z})(z\in{A}\rightarrow{x\in{z}})}$
*注:$\bigcap{\empty}$ is undefined while $\bigcup{\empty}=\empty$
power set :幂集
相关结论:
(1) $A \subseteq B \Leftrightarrow 2^A \subseteq 2^B$
(2) $2^A \in 2^B \Rightarrow A \in B$:$\Leftarrow$的反例:
(3) $2^A \cap 2^B=2^{A \cap B}$
(4) $2^A \cup 2^B \subseteq 2^{A \cup B}$:(比如$A={1,2,3,4}$$B={1,2,5,6}$很显然$2^A \cup 2^B$ 和$2^{A \cup B}$不一样大
Transitive Set(传递集):
相关性质:
有序对:
1.$\langle x, y\rangle:={{x},{x, y}}$
2.$\langle a, b, c, d\rangle=\langle\langle a, b, c\rangle, d\rangle=\langle\langle\langle a, b\rangle, c\rangle, d\rangle$
3.Cartisian Product (笛卡尔积)
4.
5.$A \times B \subseteq C \times D$ iff $A \subseteq C$ and $B \subseteq D$ Proof
关系
1.<a,b>$\in$R $\Leftrightarrow$aRb
2.Identity Relation(恒等关系):
3.Universal Relation(全域关系):
4.Empty Relation(空关系):
5.$\operatorname{fld}(R)=\bigcup \bigcup R$ –证明
6.某个关系的一些运算:
| 运算 | 汉译 | 含义 |
|---|---|---|
| converse | 逆 | $R^{-1}={\langle x, y\rangle:\langle y, x\rangle \in R}$ |
| restriction | 限制 | $R \mid A={\langle x, y\rangle:\langle x, y\rangle \in R \wedge x \in A}$ |
| image | 象 | $R[A]={y:(\exists x)(x \in A \wedge\langle x, y\rangle \in R)}$ |
| composite | 合成 | $S \circ R={\langle x, z\rangle:(\exists y)(\langle x, y\rangle \in R \wedge\langle y, z\rangle \in S)}$ |
7.结论
(1) $R \circ(S \cup W)=(R \circ S) \cup(R \circ W)$ (2) $(R \cup S) \circ W=(R \circ W) \cup(S \circ W)$ (3) $R \circ(S \cap W) \subseteq(R \circ S) \cap(R \circ W)$ (4) $(R \cap S) \circ W \subseteq(R \circ W) \cap(S \circ W)$
8.关系的一些性质:
| 性质 | 汉译 | 等价条件 |
|---|---|---|
| reflexive | 自反的 | $I_{A}\subseteq{R}$ |
| inreflexive | 反自反 | $I_{A}\bigcap R=\empty$ |
| symmetric | 对称 | $R^{-1}\subseteq R$ iff $R^{-1}=R$ |
| antisymmetric | 反对称 | $R\bigcap R^{-1}=I_A$ |
| transitive | 传递 | $R\circ R\subseteq R$ |
性质:—proof
(1) If $R_1, R_2 \subseteq A \times A$ are reflexive, then $R_1^{-1}, R_1 \cap R_2, R_1 \cup R_2$ are reflexive. (2) If $R_1, R_2 \subseteq A \times A$ are symmetric, then $R_1^{-1}, R_1 \cap R_2, R_1 \cup R_2$ are symmetric. (3) If $R_1, R_2 \subseteq A \times A$ are transitive, then $R_1^{-1}, R_1 \cap R_2$ are transitive. (4) If $R_1, R_2 \subseteq A \times A$ are antisymmetric, then $R_1^{-1}, R_1 \cap R_2$ are antisymmetric.
闭包
| 类型 | 汉译 | 构造方法 | 表示 |
|---|---|---|---|
| reflexive closure | 传递闭包 | $R\bigcup I_A$ | $r(R)$ |
| symmetric closure | 对称闭包 | $R\bigcup R^{-1}$ | $s(R)$ |
| transitive closure | 传递闭包 | $\displaystyle\bigcup_{n=1}^{\infty}{R^n}$ | $t(R)$ |
性质:proof
(1) If $R$ is symmetric/reflexive/transitive, then $s(R)=R$ or $r(R)=R$ or $t(R)=R$. (2) If $R_1 \subseteq R_2$, then $r\left(R_1\right) \subseteq r\left(R_2\right), s\left(R_1\right) \subseteq s\left(R_2\right)$ and $t\left(R_1\right) \subseteq t\left(R_2\right)$ (3) $r\left(R_1\right) \cup r\left(R_2\right)=r\left(R_1 \cup R_2\right)$ (4) $s\left(R_1\right) \cup s\left(R_2\right)=s\left(R_1 \cup R_2\right)$ (5) $t\left(R_1\right) \cup t\left(R_2\right) \subseteq t\left(R_1 \cup R_2\right)$
more: proof
(1) If $R$ is reflexive, then $s(R)$ and $t(R)$ are also reflexive. (2) If $R$ is symmetric, then $r(R)$ and $t(R)$ are also symmetric. (3) If $R$ is transitive, then $r(R)$ is also transitive.
other:
(1) $r(s(R))=s(r(R))$ (2) $r(t(R))=t(r(R))$ (3) $s(t(R)) \subseteq t(s(R))$
等价关系:Equivalence Relation
1.一些概念
| 概念 | 汉译 | 含义 | 符号 |
|---|---|---|---|
| equivalence class | 等价类 | ~~~~ | $[x]_R={y: y \in A \wedge x R y}$ |
| quotient set | 商集 | $A / R=\left{[x]_R: x \in A\right}$ | |
| partition | 划分 | ~~~~ | |
| 相容关系 | 自反且对称 |
相容关系:Tolerance Relation
1.reflexive and symmetric
2.tolerance class 相容类
3.maximal tolerance class 最大相容类
覆盖:cover
偏序: Partial Order
1.poset 偏序集 :$<A,R>$
2.we say y covers x if :
$(x \leq y) \wedge(x \neq y) \wedge \neg(\exists z)(z \in A \wedge x \leq z \wedge z \leq y \wedge z \neq x \wedge z \neq y)$
3.$\operatorname{cov}_R(A)={\langle x, y\rangle \in R: y$ covers $x}$
4.Hasse Diagram(哈斯图)
5.一些概念 (都是一些元素)
-
the least element (最小元) of $B$ if $(\forall y)(y \in B \rightarrow x \leq y)$
- the greatest element (最大元) of $B$ if $(\forall y)(y \in B \rightarrow y \leq x)$
- a minimal element (极小元) of $B$ if $(\forall y)(y \in B \wedge y \leq x \rightarrow x=y)$
- a maximal element (极大元) of $B$ if $(\forall y)(y \in B \wedge x \leq y \rightarrow x=y)$
- the upper bound (上界) of $B$ if $(\forall y)(y \in B \rightarrow y \leq x)$
- the lower bound (下界) of $B$ if $(\forall y)(y \in B \rightarrow x \leq y$ )
- least upper bound (最小上界/上确界)
- greatest lower bound (最大下界/下确界)
函数:Function
| total function | 全函数 |
|---|---|
| partial function | 部分函数 |
- 写法:$f: A \rightarrow B, f: x \mapsto y$
- all functions from A to B: $A_B ={f:(f : A \rightarrow B)}$
- Indicator Function (特征函数): Let $A \subseteq E$. Then $\mathcal{X}_A: E \rightarrow{0,1}$ is defined by $\mathcal{X}_A(x)=1$ iff $x \in A$.
-
- injection (单射): if $\left(\forall x_1 \in A\right)\left(\forall x_2 \in A\right)\left(x_1 \neq x_2 \rightarrow f\left(x_1\right) \neq f\left(x_2\right)\right)$
- surjection (满射) : if $\operatorname{ran}(f)=B$
- bijection (双射): if it is both an injection and a surjection.
-
only when f is a bijection, we have that $f^{-1} : B \rightarrow A$ is a function, and we call $f^{-1}$ the inverse function (逆函数)
- (1) If $f$ and $g$ are bijections (respectively, injections or surjections), then $f \circ g$ is also a bijection (respectively, injection or surjection). (2) If $f \circ g$ is a surjection, then $f$ is a surjection. (3) If $f \circ g$ is an injection, then $g$ is an injection. (4)IF $f \circ g$ is an bijection, then $f,g$ are both bijections.
基数和等势
| 1.the cardinality (基数) of A: $ | A | $ or card(A) :the number of element in A |
2.无穷的大小:
-
$ \mathbb{N} =\aleph_0$, where $\aleph_0$ is called the Aleph Zero (阿列夫零); -
If $\left A_k\right =\aleph_k$, then $\left 2^{A_k}\right =\aleph_{k+1}$, where $\aleph_k$ is called the Aleph $k$ (阿列夫 $k$ ).
3.dominated(支配):A is dominated by B means $A\preceq B$
we say $A\prec B$ : if $A \preceq B$ and $A\not\approx B $
4.Theorem: Schröder-Berstein’s Theorem If $A \preceq B$ and $B \preceq A$, then $A \approx B$.
5.for any set A, we have $A\not\approx2^{A}$
6.$2^{\N}\approx \R$