命题逻辑

命题逻辑

  1. 命题(propositions)与 命题变元 与 命题公式 的关系

    quicker_5600f7ba-3e5a-40f9-9a8e-c8ec7fdf92da.png

  2. atomic propositions (原子命题):不能再拆
  3. conjunction (合取) “$\wedge$” disjunction (析取) “$\vee$”
  4. exclusive or (异或)
  5. 半加器
  6. ($(P\rightarrow P)\rightarrow R)$

  7. 指派:

    image-20221230190323779

  8. A compound proposition formula is said to be
    • a tautology(重言式)if it is true under any assignment;
    • satisfiable(可满足的)if it is true under some assignment;
    • a contradiction(矛盾式)if it is false under any assignment.
  9. Let a and B be two compound proposition formulas over variables $P_1,…,P_n$. If the truth values of $\alpha$ and $\beta$ are the same under any assignment,then a and B are said to be logical equivalent(等值/逻辑等价),denoted by $\alpha\Leftrightarrow \beta$ or $\alpha=\beta$.

  10. logical equivalence theorem (等值定理)

  11. 德摩根律:

    image-20221230191459078

  12. image-20221230191632819

image-20221230192408763

  1. (tautological implication)重言蕴含

image-20221230192839031

  1. 证明法:image-20221230192946240

  2. Example: Proof by Rules of Inferences (正常的证明)

  3. Proof by Resolutions 归结法 examples

image-20221230202313989